Information about a product
Praktyczne uczenie maszynowe

Click to zoom

Ostatnia dekada to czas bezprecedensowego rozwoju sztucznej inteligencji – nie tylko przełomowych badań nad algorytmami uczenia maszynowego, ale również coraz powszechniejszego stosowania inteligentnych maszyn w najróżniejszych dziedzinach naszego życia.... czytaj więcej

Praktyczne uczenie maszynowe

Szeliga Marcin
availability:
status_icon
Available
99,00 zł
89.10 / 1egz.
You save 10% (9,90 zł).
In stock
Publication language:
polski
Edition:
1
Number of page:
360
Binding:
Miękka
ISBN/ISSN:
9788301207625
Producent:
Wydawnictwo Naukowe PWN S.A., ul. Gottlieba Daimlera 2, 02-460 Warszawa (PL), tel. 22 695 43 21, email: recepcja@pwn.pl
Ostatnia dekada to czas bezprecedensowego rozwoju sztucznej inteligencji – nie tylko przełomowych badań nad algorytmami uczenia maszynowego, ale również coraz powszechniejszego stosowania inteligentnych maszyn w najróżniejszych dziedzinach naszego życia. Rozwój ten ogranicza niewystarczająca liczba specjalistów, łączących znajomość modelowania danych (przygotowania danych i zasad działania algorytmów uczenia maszynowego) ze znajomością języków analizy danych, takich jak SQL, R czy Python. Inżynieria danych (ang. data science) to interdyscyplinarna wiedza, której opanowanie wymaga znajomości algebry, geometrii, statystyki, rachunku prawdopodobieństwa i algorytmiki, uzupełnionej o praktyczną umiejętność programowania. Co więcej, sztuczna inteligencja jest przedmiotem intensywnych badań naukowych i samo śledzenie postępów w tej dziedzinie wiąże się z regularnym (codziennym) dokształcaniem. Niniejsza książka łączy w sobie teorię z praktyką. Opisuje rozwiązania kilkunastu typowych problemów, takich jak prognozowanie zysków, optymalizacja kampanii marketingowej, proaktywna konserwacja sprzętu czy oceny ryzyka kredytowego. Ich układ jest celowy – każdy przykład jest okazją do wyjaśnienia określonych zagadnień, zaczynając od narzędzi, przez podstawy uczenia maszynowego, sposoby oceny jakości danych i ich przygotowania do dalszej analizy, zasady tworzenia modeli uczenia maszynowego i ich optymalizacji, po wskazówki dotyczące wdrożenia gotowych modeli do produkcji. Książka jest adresowana do wszystkich, którzy chcieliby poznać lub udoskonalić: praktyczną znajomość statystki i umiejętność wizualizacji danych niezbędnej do oceny jakości danych; praktyczną znajomość języka SQL, R lub Python niezbędnej do uporządkowania, wstępnego przygotowania i wzbogacenia danych; zasady działania poszczególnych algorytmów uczenia maszynowego koniecznych do ich wyboru i optymalizacji; korzystanie z języka R lub Python do stworzenia, oceny, zoptymalizowania i wdrożenia do produkcji modeli eksploracji danych. Zarówno studenci kierunków i
Zobacz również
Opiniowanie sądowo-psychologiczne - epubOpiniowanie sądowo-psychologiczne - epubAnna Więcek-Durańska
99,00 zł
MikroekonomiaMikroekonomiaMankiw Gregory N., Taylor Mark P.
99,90 zł
Obliczenia konstrukcji prętowychObliczenia konstrukcji prętowychMisiak Jan
89,00 zł   80,10 zł
This page uses cookie files to provide its services in accordance to Cookies Usage Policy. You can determine conditions of storing or access to cookie files in your web browser.
Close
pixel