Informacje o publikacji
Wydanie: | 2 |
Miejsce i rok wydania: | Warszawa 2018 |
Język publikacji: | polski |
ISBN/ISSN: | 978-83-235-3499-0 |
EAN: | 9788323534990 |
Liczba stron: | 424 |
Wielkość pliku: | 3,81 MB |
Typ publikacji: | Praca naukowa |
DOI: | https://doi.org/10.31338/uw.9788323534990 |
Drugie, zmienione wydanie nowoczesnego wykładu analizy tensorowej w naukach fizycznych i technicznych.
Autor szczegółowo wyjaśnia, czym jest rozmaitość różniczkowa, wektor i tensor oraz dlaczego wektor nie należy do przestrzeni, w której punktach jest zdefiniowany, poświęca uwagę pochodnej Liego i jej związkom z symetriami i prawami zachowania, tensorom względnym i znajdowaniu linii geodezyjnych, a teraz także reprezentacji równania dewiacji geodezyjnej w postaci układu równań dla skalarów Jacobiego. Tekst główny uzupełniają przykłady i zadania. Ostatni rozdział to monografia zastosowań analizy tensorowej do badania krzywizny i symetrii przestrzeni Riemanna oraz czasoprzestrzeni.
Podręcznik ten przeznaczony jest dla wszystkich, którzy używają tensorów w naukach fizycznych i technicznych. Może być interesujący dla matematyków, stanowi bowiem etap pośredni między klasyczną geometrią w przestrzeni trójwymiarowej a nowoczesną abstrakcyjną geometrią różniczkową rozmaitości.
******
Elements of Tensor Analysis. 2nd Edition
The second revised edition of the modern tensor analysis lecture on physical and engineering science. The author gives detailed definitions of a differentiable manifold, a vector and a tensor and explains why a vector does not belong to space at points of which it is defined. The subjects discussed include the Lie derivative and its relations to symmetries and conservation laws, relative tensors and finding geodesic lines, as well as the representation of the geodesic deviation equation in the form of a system of equations for Jacobi scalars. Apart from the main text, the publication includes examples and tasks. The last chapter is a monograph on tensor analysis applications for investigating the curvature and symmetry of a Riemann space and space-time.
Keywords: Riemann space, geodesic, differential manifold, vectors, tensors.
Zobacz inne publikacje z serii matematycznej »
Autor szczegółowo wyjaśnia, czym jest rozmaitość różniczkowa, wektor i tensor oraz dlaczego wektor nie należy do przestrzeni, w której punktach jest zdefiniowany, poświęca uwagę pochodnej Liego i jej związkom z symetriami i prawami zachowania, tensorom względnym i znajdowaniu linii geodezyjnych, a teraz także reprezentacji równania dewiacji geodezyjnej w postaci układu równań dla skalarów Jacobiego. Tekst główny uzupełniają przykłady i zadania. Ostatni rozdział to monografia zastosowań analizy tensorowej do badania krzywizny i symetrii przestrzeni Riemanna oraz czasoprzestrzeni.
Podręcznik ten przeznaczony jest dla wszystkich, którzy używają tensorów w naukach fizycznych i technicznych. Może być interesujący dla matematyków, stanowi bowiem etap pośredni między klasyczną geometrią w przestrzeni trójwymiarowej a nowoczesną abstrakcyjną geometrią różniczkową rozmaitości.
******
Elements of Tensor Analysis. 2nd Edition
The second revised edition of the modern tensor analysis lecture on physical and engineering science. The author gives detailed definitions of a differentiable manifold, a vector and a tensor and explains why a vector does not belong to space at points of which it is defined. The subjects discussed include the Lie derivative and its relations to symmetries and conservation laws, relative tensors and finding geodesic lines, as well as the representation of the geodesic deviation equation in the form of a system of equations for Jacobi scalars. Apart from the main text, the publication includes examples and tasks. The last chapter is a monograph on tensor analysis applications for investigating the curvature and symmetry of a Riemann space and space-time.
Keywords: Riemann space, geodesic, differential manifold, vectors, tensors.
Zobacz inne publikacje z serii matematycznej »
Zobacz również
Inni klienci kupili również
Elementy teorii operatorów na przestrzeni Hilberta – PDF29,00 zł
14,00 zł
Szczegóły
- Zwięzły wykład podstawowych zagadnień teorii operatorów na przestrzeniach Hilberta. Wśród omówionych tematów znajdują się: rachunek funkcyjny i twierdzenia spektralne, operatory zwarte, śladowe i Hilberta-Schmidta, samosprzężone rozszerzenia operatorów
Krótkie wprowadzenie do równań różniczkowych cząstkowych – PDF29,00 zł
14,00 zł
Szczegóły
- Publikacja dla studentów matematyki i fizyki, a także innych kierunków nauk przyrodniczych i technicznych na wyższych uczelniach wszelkich typów. Pokazuje, jak radzić sobie z powstającymi w rozlicznych dziedzinach fizyki i techniki zagadnieniami
Wstęp do geometrii różniczkowej – PDF35,00 zł
14,00 zł
Szczegóły
- Nowe wydanie popularnego podręcznika poświęconego klasycznej geometrii różniczkowej, rozszerzone o omówienie całek z funkcji wektorowych oraz o dodatkowy rozdział poświęcony topologii różniczkowej. Książka ta powstała z notatek do wykładów geometrii
Update Required
To play the media you will need to either update your browser to a recent version or update your Flash plugin.